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Generality: quantifiers and domains
Wishful thinking?

(1) Almost no one voted for Brexit

Domain: eligible voters in UK (1) is false
Domain: inhabitant of the world (present or future) (1) is true

Politics aside – quantifiers are often restricted

Are there also absolutely general quantifiers?

Absolutist – yes
Some domain comprises absolutely everything

Relativist – no
No domain comprises absolutely everything

NB: first approximation – notoriously difficult to formulate
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Extensibility and paradox
Dummett: ‘prime lesson’ of the paradoxes – absolutism fails

i.e. no (classical) quantification over absolutely everything

Indefinitely extensible concept:
‘if we can form a definite conception of a totality all of whose
members fall under that concept, we can, by reference to that totality,
characterize a larger totality all of whose members fall under it.’

(1994b, p. 22)

e.g. the concept of being a set (roughly: arbitrary collection)

The Russell Reductio (Zermelo 1908)
Given a domain D, let r = {x in D | x < x}. Then r is not in D

NB: no assumptions about D – extent or character

Further examples: ordinal, interpretation, property, thing, etc.
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Extensibility and paradox – absolutist response
Absolutism ‘involves some logical or mathematical mistake’

– rejected by Cartwright and Boolos

Orthodox absolutism
Neither set not thing is indefinitely extensible:

‘Every set’ may quantify over absolutely every set

‘Everything’ may quantify over absolutely everything

‘Straightforward response’ to Russell’s paradox
When D is absolutely comprehensive, there is no such set as r:

r = {x : x < x}

Logical truth: no set comprises everything that is non-self-membered

What sets are there? Consult our best theories of sets – e.g. ZFCU
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Generality vs collectability
Absolutism vs relativism – a trade-off:

Relativism: limits generality of quantifiers
e.g. a theorem of ZFCU:

(2) Everything is the sole element of its singleton set

Limited domain D – (2) falls short of its intended generality

Absolutism: curtails collecting power of sets
e.g. application of ZFCU to natural language semantics:

‖‘donkey’‖ = {a ∈ D : a is a donkey}

‖‘set’‖ = {a ∈ D : a is a set}

‖‘identical’‖ = {〈a1, a2〉 : a1, a2 ∈ D, a1 is identical to a2}

Absolutely comprehensive D – items in ‖‘set’‖ are uncollectable
(a plurality of items is ‘collected’ if some set has them as its elements)
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Generality vs collectability – trade off

Generality Collectability
Absolutism ✓absolutely general ✗ uncollectable
(trad.) quantifiers pluralities of sets

Relativism ✗ no absolutely general ✓ no uncollectable
(trad.) quantifiers pluralities of sets

Make do? – non-quantificational generality: e.g. schemas, modality
– non-set-based collectability: e.g. plurals, higher-order

Aim: not to settle the trade off – but to reach it

Main target – heterodox absolutist response to the paradoxes:

Third way ✓absolutely general ✓ no uncollectable
absolutism quantifiers pluralities of sets
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The Dummettian argument
What drives indefinite extensibility?

Dummett – plenitude principle: (P) Domain Separation
If there is some definite totality over which the variable ‘x’ ranges, . . . then
of course there will be some definite subset of objects of the totality that
satisfy the predicate ‘F(ξ)’. (Dummett 1981, p. 530)

The Russell Reductio then establishes:

(C) No Comprehensive Domain
No determinate totality quantified over comprises everything
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All-in-One?
What should the absolutist make of the Dummettian argument?
Vexed question – what is a ‘determinate totality’?

– NB: my primary aim is not exegetic

Boolos’s suspicion: totality = set-like item
Dummett knows perfectly well that there is . . . no set containing all
sets. . . Nevertheless, it would seem he does think that there has to be
a—what to call it—totality? collection? domain? He would seem to believe
that whenever there are some things under discussion, . . . being quantifier
over,. . . there is a set-like item, a ‘totality’, to which they all belong.

(Boolos 1993, p. 216)

Cartwright – Dummett assumes All-in-One:

All-in-One Principle
Quantification presupposes a set-like domain
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The Dummettian argument – regimentation i
Suppose – determinate totality = set:

(P-i) Set-Domain Separation
Given a predicate φ(x), and any set-domain, there is another set
comprising the members of the set-domain that satisfy φ(x)

(C-i) No Comprehensive Set-Domain
No set-domain comprises everything

Absolutist response – accept (C-i) and reject All-in-One principle

Residual issue – how to understand ‘domain’-talk?
– Cartwright: elliptical for a plural paraphrase – e.g.

Comprehensive Plurality-Domain
Zero or more items quantified over comprise everything

Note: (i) plurals – anti-Quineanism; (ii) loose talk – ‘plurality’
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The Dummettian argument – regimentation ii
Dummett disavows Boolos’s interpretation:
I have . . . avoided . . . any . . . nouns such as ‘domain’. . . lest George Boolos
should exclaim triumphantly, ‘What did I tell you? A what-do-you-call-it!
. . . nothing hangs on the use of such locutions. (1994b, p. 248)

Regimentation ii – determinate totality = ‘plurality’ (so to speak!):

(P-ii) Plurality-Domain Separation
Given a predicate φ(x), for any zero or more things quantified over,
there is a set comprising the objects among them that satisfy φ(x)

A plural version of the Russell Reductio yields:

(C-ii) No Comprehensive Plurality-Domain
No zero or more things quantified over comprise everything
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No case to answer?
Plural first-order logic (PFO) – includes truistic-seeming axioms:

Plural Comprehension
Given φ(x), zero or more things comprise the satisfiers of φ(x)

PFO consequently proves :

Comprehensive Plurality-Domain
Zero or more things comprise everything

Failure of absolutism – paradox’s prime lesson?

Regimentation ii: determinate totality = ‘plurality’
(P-ii) Plurality-Domain Separation – inconsistent

Regimentation i: determinate totality = set (or setlike item)
(C-i) No Comprehensive Set-Domain – no threat to absolutism
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Prospects for relativism – hopeless?
PFO proves a truistic-seeming theorem:

Comprehensive Plurality-Domain (CpD)
Some zero or more things comprise everything ∃xx∀z(z ≺ xx)

But does (CpD) capture absolutism? – idealize:

Plural first-order language of ZFCU – interpreted by 〈M, S , E〉
quantifiers ‘everything’, ‘something’ ∀x, ∃y domain: M

‘any zero or more items’ ∀xx, ∃yy

set-quantifiers ‘every set’, ‘some set’ ∀s, ∃t domain: S
‘any zero or more sets’ ∀ss, ∃tt

predicate ‘. . . is an element of . . . ’ x ∈ s extension: E
(additionally: connectives, =, and the ‘member-plurality’ predicate: ≺)

Domain: M – (CpD) is true in 〈M, S , E〉 (whatever M contains)
James Studd Generality, Extensibility, and Paradox 11/20
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The Zermellian hierarchy

Familiar picture:

Quasi-categoricity
ZFCU admits of an
open-ended sequence of
ever more liberal models:
〈M0, S 0, E0〉, 〈M1, S 1, E1〉,
〈M2, S 2, E2〉,. . .

How to deny M0, say, is comprehensive?
No Comprehensive Plurality-Domain – false in 〈M0, S 0, E0〉

Deny comprehensiveness of M0 from perspective of 〈M1, S 1, E1〉
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Argument from indefinite extensibility – stage setting
How to track the shift from 〈M0, S 0, E0〉 to 〈M1, S 1, E1〉?

Sorted plural language – interpreted by 〈M0, S 0, E0〉, 〈M1, S 1, E1〉

quantifiers ‘every thingi’, ‘zero or more thingsi’ ∀xi, ∃yyi dom. Mi

set-quant. ‘every seti’, ‘zero or more setsi’ ∀si, ∃tti dom. S i

predicate ‘. . . is an elementi of . . . ’ x ∈i s ext. Ei

(logical predicates: unsorted)

Logic – mustn’t prejudge whether expansion attempt succeeds
– assume M0 ⊆ M1 (absolutist: M0 = M1)

Sorted plural logic: PFO0,1

Sort usual quantifier rules (for M0 ⊆ M1)
Plural Compi: ∃xxi∀xi(xi ≺ xxi ↔ φ(xi)) – allow other indices in φ(xi)
Aux. Truism0,1: Any one1 of zero or more items0 is an item0.

James Studd Generality, Extensibility, and Paradox 13/20



Absolute generality The Dummettian argument An inconsistent triad Against the third way

An inconsistent triad
Absolutist thesis inconsistent with two relativist ones:

(1) Comprehensive1 Domain0

Some zero or more things0 comprise everything1
∃xx0∀x1(x1 ≺ xx0)

(2) Sets0 get Collected1

Any zero or more sets0 are the elements1 of a set1
∀ss0∃s1(∀x1(x1 ∈1 s1 ↔ x1 ≺ ss0))

Terminology: urelementi – itemi that is not a seti

(3) Urelements0 remain Urelements1

Every urelement0 is a urelement1
∀x0(¬∃s0(x0 = s0)→ ¬∃s1(x0 = s1))

(1), (2) and (3): jointly inconsistent in PFO0,1 – pairwise consistent
James Studd Generality, Extensibility, and Paradox 14/20
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Two traditional ways out
Relativism
(1) Comprehensive1 Domain0.

(2) Sets0 get Collected1.

(3) Urelements0 remain Urelements1.

Zermellian hierarchy: 〈M0, S 0, E0〉, 〈M1, S 1, E1〉, 〈M2, S 2, E2〉, . . .

Orthodox Absolutism
(1) Comprehensive1 Domain0

(2) Sets0 get Collected1

(3) Urelements0 remain Urelements1

Single intended (non-set) model for ZFCU: 〈M∞, S∞, E∞〉

Trade off – generality vs collectability
James Studd Generality, Extensibility, and Paradox 15/20
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The third way out
Third way absolutism
(1) Comprehensive1 Domain0

(2) Sets0 get Collected1

(3) Urelements0 remain Urelements1

Extension of ‘set’ expands within absolutely comprehensive domain:

Absolutist-friendly fixed-domain hierarchy
〈M∞, S 0, E0〉, 〈M∞, S 1, E1〉, 〈M∞, S 2, E2〉 . . . with S 0 ⊂ S 1 ⊂ . . . M∞

Williamson: ‘. . . given any reasonable assignment of meaning to the word
‘set’ we can assign a more inclusive meaning while feeling that we are going
on the same way . . . ’ (1998, p. 20)
Uzquiano: ‘reframe [cumulative hierarchy] in terms of a cumulative process
of reinterpretation of the primitive set-theoretic vocabulary’ (2015, p. 150)

Trade off? Prima facie – does well on generality and collectability
James Studd Generality, Extensibility, and Paradox 16/20
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Generality – restricted quantifiers
Third way – unrestricted quantifiers achieve absolute generality

– what about restricted quantifiers (e.g. ‘every set’)?

Power set axiom
Every set has a power set
∀s∃t∀z(z ∈ t ↔ z ⊆ x)

Third way – ‘every set’ (∀s,∃t) – domain S i

– fails to rules out powersetless sets j

Improvement on relativism?
–ZFCU needs ‘every set’ as much as ‘everything’
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Collectability – urelements
Third way – liberal: pluralities of setsi always collected j

– what about pluralities of urelementsi?

Uniformly-indexed set theory: ZFCUi – tells us a fair amount:

Plural ZFCUi proves:
C1i: any plurality of at most seti-many objectsi is collected by a unique seti
C2i: any plurality of at most ℵ0 objectsi is collected by a unique seti
C3i,n: any plurality of at most n objectsi is collected by a unique seti (fixed n)
C4i: any plurality of at most 2 objectsi is collected by a unique seti

Subtheories – e.g. C4i follows from Extensionalityi, Empty Seti, Pairingi

Third way absolutism – which of C1i–C4i hold?
Comprehensive j Domaini, Setsi get Collected j – refutes C4i (in PFOi, j)

– refutes C3i,n, C2i, and C1i (granted a two-membered set)

Third way: heavy price – reject (weak subtheories of) ZFCU!
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Response – restricted ZFCU
Third way – must reject a ZFCUi-axiom – obvious choice:

Pairingi: any objectsi a and b are the elementsi of a seti (i.e. {a, b})

Trouble – ‘future’ sets j lurk among urelementsi:

Pairingi: s j 7→ {s j} is a one-one mapping S j → S i |S j| ≤ |S i|

Setsi get Collected j – Cantor’s diagonal argument |S j| > |S i|

Response – restrict axioms to ‘available’ items – e.g.

Restricted Pairingi: any available objectsi a and b have a pair seti

Difficulty – undermines applications – e.g. 〈a, b〉 = {{a}, {a, b}}

Absolutist – encode ‖=‖ as ‘plurality’ of pairs 〈a, a〉
Third way – forgoes pairs of unavailable item – encode ‖=‖ how?

James Studd Generality, Extensibility, and Paradox 19/20
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Generality vs collectability – trade off

Generality Collectability

Absolutism ✓absolutely general ✗ uncollectable
(trad.) quantifiers pluralities of sets

Relativism ✗ no absolutely general ✓ no uncollectable
(trad.) quantifiers pluralities of sets

Third way ✗trouble with ✗ must reject
absolutism ‘every set’ ZFCU
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