127: Lecture notes HT19. Week 6.

H. Quantified Modal Logic (QML)

H.I. Syntax (LfP 9.1)

H.I.1. Primitive symbols

We add a O to the syntax of PC with =.

Primitive vocabulary of QML: parentheses, and the following:
e connectives: —, ~, 0O,V
e variables: z,y,... (with or without numerical subscripts)
e n-place predicates F, G, ... (with or without numerical subscripts), for each n > 0.
e binary predicate: =

e individual constants (names): a,b, ... (with or without numerical subscripts)

Remark. No 0-place predicates, i.e. sentence letters.

H.I.2. Complex expressions

Define QML-term and QML-wff just as in PC with =, adding a clause for O.

Definition of a QML-term:
e If o is a variable or an individual constant, « is a term.
Definition of a QML-wff:

e If II" is an n-place predicate and o, ..., a, are terms, I[I"aq, ..., a,, is a wif.
e If o and (8 are terms, then o = [is a wff.
e If ¢ and ¢ are wifs, and « is a variable, ~¢, (¢ — ©), O¢ and Vag¢ are wils.

Remarks.
e The usual ‘unofficial’ connectives are introduced in the usual way.

e Free and bound variable occurrences are defined in the same way as before.

Worked Example. JyOy = x is a QML-wif (with the x occurring free, and the y bound).

H.I1.3. Symbolization

Worked Example. Disambiguate the following by giving two QMUL-symbolizations:

(1) Every Polish logician is necessarily a logician

Remark. A QML-wff is said to be de re if it has a subformula of the form O¢(«) in which
the variable a occurs freely; otherwise it is de dicto.

39

127: Lecture notes HT19. Week 6.

H.II. Semantics: SQML (LfP 9.3)
H.I1.1. SQML-models

Let’s start with a simple—constant domain—semantics for QML.

Definition of a SQML-model (LfP 230): A SQML-model is a triple (#', 2, .%):

e # is a non-empty set (‘the set of worlds’)
e 7 is a non-empty set (‘domain’)
e .7 is a function such that: (‘interpretation function’)

— J(a) € Z for each constant «

— Z(I1") is a set of n + 1-tuples of the form {(uy, ..., u,,w), where uy,...u, are
members of Z and w € ¥, for each n-place predicate 11"

Note. No accessibility relation, Z.

H.I1.2. Intensions and Extensions

J (IT") tells us which n-tuples of possibilia satisfy which predicates in which worlds.
e Recall that a (non-modal) PC-model # = (2, .7) assigns extensions to predicates:
— e.g. for unary F', Z(F) is a set of members of &
— Fais true in A iff #(a) e I(F).
e Similarly a SQML-model .# = (#',9,.#) assigns ‘intensions’ to predicates:
— e.g. for unary F', Z(F) is a set of pairs (d,w) with d € ¥ and we ¥ .
— Fais true at w in A iff (S (a),w) e Z(F).

We can re-package the information from an intention in terms of w-extensions:

Definition of a w-extension: given a SQML-model .# = (¥, 9, .#), the extension
of an n-place predicate I1" at world w—in symbols: .#,(I1")—is defined as follows:

Fw (™) = {lupy .. up): {ug, .o up,wy € Z(117)}

Remark. All the w-extensions for w € # uniquely determine the intension and vice versa.

H.I1.3. SQML-models vs. PC-models

SQML-models generalize PC-models much as SMPL-models generalize PL-models:

Meaning in PL/PC Meaning in SMPL/SQML
Sentence letter P extension intension
i.e. truth-value i.e. extension at w, for each w € #
Unary predicate F' extension intension
i.e. set i.e. extension at w, for each w € #

40

127: Lecture notes HT19. Week 6.

H.I1.4. Term denotations

Variable assignments, and term denotations are defined as in PC:

Definition of term denotation: Let .# = (#',2,.%) be an SQML-model:
e An assignment ¢ for .# is a function that maps each variable to a member of Z.

e For term «, we define its denotation in .Z relative to assignment g:

S (a) if a is a constant

g(a) if a is a variable

[l = {

Remark. The variant assignment g7 is defined as before.

H.II.5. Valuations

Definition of valuation (for SQML): The valuation function, V4, for a SQML-
model A4 =W, 2,) and variable assignment ¢ is the unique function that assigns
0 or 1 to each wif at each world and satisfies the following conditions:

Atomic formulas: for terms: «, 8, aq, ... a,, and n-ary predicate, I1™:
o Vygla=p6,w)=1iff [alsy =[Blrg
o Vy, (Mo, ... an,w) = 1iff Joalrg, ..., [anlry, w) e F(1I")
Connectives: for formulas ¢ and :
o Vyg(d—h,w)=1iff Vyo(p,w) =0o0r Vy,(,w) =1
o Viug(~p,w) =1iff Viyo(d,w) =0
Modal operators: for formula ¢:
o V., (Op,w) =1iff for every ve #', Vy,(0,v) =1

Quantifiers: for formula ¢ and variable a:
o Vyy(Vag,w) = 1iff, for every d € Z, Vy 4o (¢, w) = 1

Remark. The clause for atomic formulas may be reformulated in terms of w-extensions:

o VMo, ...,an,w) =1t (ai]pg, ... [anlry) € Fuw(ll)

H.IL6. Validity (LfP 231)

SQML-validity is truth at every world of, and every assignment for, every SQML-model.

Worked Example. Show that:
1. EsqMmL DVQZ(PQZ ALz — LJ})
2. ¥squr Yo (Px A Lr — OLx).

41

127: Lecture notes HT19. Week 6.

H.ITI. Axiomatic proofs in PC (LfP 4.4)

To start with, let’s extend axiomatic proof to PC.

H.II1.1. Proof in PC

As in PL, a proof of a wif ¢ from a set of wifs I' is a finite sequence of wffs terminating in
¢ each of which is either an axiom, a member of I, or follows from earlier members of the
sequence by the application of a rule—when there is such a proof, we write I' p¢c ¢.

Warning. Except when otherwise stated—e.g. for the proof of completeness—this is always
the way we define an axiomatic proof from assumptions.

Axiomatic system for PC (L{P 99)
e Rules: All PC-instances of (MP) and (UG) are PC-rules:

p—v 9 ¢
Yy MP Tad

where in UG « is a variable.

UG

o Azxioms: All PC-instances of the PL-schemas are PC-axioms:

¢— (¥ —9) (PL1)
(0= (b —=x) = (¢ —=¢) = (¢ = X)) (PL2)
(~p = ~¢) = ((~ = ¢) = ¥) (PL3)

e All PC-instances of (PC1) and (PC2) that meet the side-conditions specified below
are PC-axioms:

Yag — ¢(5/a) (PCI)
Va(g = ¢) = (¢ — Vo) (PC2)

Definition of a PC-instance. A PC-instance of a schema is the result of uniformly
replacing each schematic formula letter ¢,,... with a PC-wff, and each schematic
term «, 3, ... with a PC-term.

Side-conditions on (PC1) and (PC2)
e (PC1) is subject to the constraint that « is a variable, and ¢(5/«) results from ¢
by correct substitution of g for « (see below).

e (PC2) is subject to the constraint that « is a variable that does not occur freely

in ¢.

42

127: Lecture notes HT19. Week 6.

H.II1.2. Correct substitution

Unchecked, (PC1) generates non-valid instances, e.g. ¥pc YrdyRxy — JyRyy.

We need to ensure that the variable substituted for x is not unintentionally bound by other
quantifiers.

Definition of correct substitution

e Say that [is substitutable for v in ¢ if o does not occur free in any subformula
of ¢ beginning with Vj3.

e When f is substitutable for « in ¢, the formula which results from ¢ by correct
substitution of B for a—in symbols: ¢(f/a)—is the formula that results from
replacing all and only free occurrences of « in ¢ with 5.

Worked Example. Compute: (i) (YyRyz)(z/x), (ii) (VyRyz)(x/y), (iii) (VyRyx)(y/x).

Remark. This amounts to Sider’s definition, LfP 100—see also Exercise Sheet 6.

H.II1.3. Abbreviating proofs in PC

As in MPL-proofs, we often abbreviate proofs by helping ourselves to PC-instances of the
meta-rule PL.

PL: (LfP101) Suppose ¢1 — (o — -+ (¢, —) is an PC-tautology. Then we help
ourselves to the following meta-rule in abbreviated proofs:

(8

Worked FExample. Construct an abbreviated proof to show that:
Fpe Va(Fz A Gx) — VoFx

H.III.4. Adequacy

When I is a set of PC-sentences and ¢ a PC-sentence (none of which contain free variables).

Soundness and completeness (LfP 105): I' Fp¢ ¢ iff I’ Epc ¢.

43

127: Lecture notes HT19. Week 6.

H.IV. Axiomatic proofs in SQML (LfP 9.7)
H.IV.1. Proofs in SQML

Axiomatic system for SQML (LfP 249-50)
e Rules: All QML-instances of MP, UG and NEC (where, in UG, « is a variable):

‘ﬁ_’i)‘ﬁmp vz¢ UG [iﬁNEC
o Azioms: All QML-instances of the PL-schemas are SQML-axioms:
¢ — (¥ — ¢) (PL1)
(@ = (= x) = (¢ = ¢) = (¢ = X)) (PL2)
(~h > ~) = ((~ = 6) = 1) (PL3)
o All QML-instances of PC-schemas meeting the side-conditions are SQML-axioms:
Vag — ¢(B/a) (PC1)
Va(p — ¢) — (¢ — Vo)) (PC2)
o All QML-instances of (RX) and (II) are SQML-axioms:
o =a (RX)
a=f— (o) = o(p)) (II)

where, in (II), § is substitutable for av and ¢(3) results from replacing zero or more free
occurrences of a with 5 in ¢(a).

e All QML-instances of the S5-schemas are SQML-axioms:

O(¢ — ¢) — (O¢ — OY) (K)
O¢ — ¢ (T)
oO¢ — O¢ (S5)

Remark. ‘QML-instance’ is defined the same as ‘PC-instance’, replacing ‘PC’” with ‘QML’.
Warning. In (II), ¢(8) need not be (¢(a))(8/a).

H.IV.2. Some controversial theorems

Adding the (relatively) uncontroversial PL- and PC-axioms and rules for connectives,
quantifiers and = to S5, or even the (relatively) uncontroversial K-axioms and rules for 0,
(and extending the schemas) generates some highly controversial theorems.

The necessity of identity: -squL o = — Oa = 3
The necessity of existence: gqur, OVaD3[(a =)

Question. Do the analogues of these theorems hold true in English?
e If Arkala is (identical to) Bea, is it impossible for Arkala not to be Bea?

e If Alice exists (is identical to something), is it impossible for Alice not to exist?

44

