E. MPL Metatheory: adequacy

Let S be any one of K, D, T, B, S4 or S5. We’ve met two notions of consequence for S:
- semantic consequence: \(\Gamma \models_S \phi \)
- axiomatic provability: \(\Gamma \vdash_S \phi \)

The aim of this section is to show that they coincide, when \(\Gamma = \emptyset \):

Adequacy. \(\vdash_S \phi \) if and only if \(\models_S \phi \).

Remark. What about if \(\Gamma \neq \emptyset \)? We’ve already seen that the left-to-right direction fails in this case (given the definition of provability from a set given in section D.II.1).

E.I. Soundness (LfP 6.5)

Start with the left-to-right direction:

Soundness Theorem. If \(\vdash_S \phi \), then \(\models_S \phi \).

The basic idea is straightforward:

Rough sketch of Soundness for K. Recall that \(\vdash_S \phi \) means that there is a finite sequence of wffs terminating in \(\phi \), each member of which is an S-axiom or the result of applying an S-rule to earlier members. But each S-axiom is S-valid. And each S-rule preserves S-validity. Consequently each member of the proof sequence—in particular, \(\phi \)—is valid. So \(\models_S \phi \).

E.I.1. Two lemmas for soundness

To flesh out the details, start with the K case. First, two lemmas:

Lemma: K-axioms are K-valid.

(PL1) \(\models_K \phi \rightarrow (\psi \rightarrow \phi) \)
(PL2) \(\models_K (\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) \)
(PL3) \(\models_K (~\psi \rightarrow ~\phi) \rightarrow ((~\psi \rightarrow ~\phi) \rightarrow ~\psi) \)
(K) \(\models_K \Box(\phi \rightarrow \psi) \rightarrow (\Box\phi \rightarrow \Box\psi) \)

Lemma: K-rules preserve K-validity.

(MP) If \(\models_K \phi \) and \(\models_K \phi \rightarrow \psi \), then \(\models_K \psi \)
(Nec) If \(\models_K \phi \), then \(\models_K \Box\phi \)

Proof. We’ve seen how to check PL1–3, K and MP—-it only remains to check Nec.

\(^1\)See Exercise Sheet 1, q. 2 and Sheet 2, q. 1.
E.I.2. Proof of Soundness for K (Compare LfP 6.5)

To complete the proof we use induction to show that the final line of a K proof sequence with \(n \)-rule applications is K-valid.

Claim. Write \(\vdash_n \phi \) to mean that there is a proof of \(\phi \) (in K) in which there are \(n \) applications of K-rules, MP or NEC.

Then: \(\vdash_n \phi \) implies \(\models_K \phi \)

Proof of claim by strong induction on \(n \).

Base Case. \(n = 0. \)
Suppose \(\vdash_0 \phi \). Then \(\phi \) is a K-axiom. So, \(\models_K \phi \) (as K-axioms are K-valid).

Let \(n \) be given.
Induction Hypothesis. Suppose for \(m < n \): \(\vdash_m \phi \) implies \(\models_K \phi \).

Induction Step. RTP: if \(\vdash_n \phi \), then \(\models_K \phi \) (given the IH).
Suppose \(\vdash_n \phi \). Consider how the last line, \(\phi \), is obtained. There are three cases:

- \(\phi \) is a K-axiom.
 Then \(\models_K \phi \) (as in the base case).

- \(\phi \) is obtained by Nec.
 Then \(\phi = \Box \psi \), and \(\vdash_m \psi \), with \(m < n \).
 By IH, \(\models_K \psi \).
 So \(\models_K \Box \psi \) (since Nec preserves K-validity)—i.e. \(\models_K \phi \).

- \(\phi \) is obtained by MP.
 Then \(\vdash_{m_1} \psi \) and \(\vdash_{m_2} \psi \rightarrow \phi \), with \(m_1, m_2 < n \).
 By IH, \(\models_K \psi \) and \(\models_K \psi \rightarrow \phi \).
 So \(\models_K \phi \) (since MP preserves K-validity).

E.I.3. Sketch of Soundness for D, T, B, S4 and S5

Exactly the same proof strategy works: we show that S-axioms are S-valid, that S-rules preserve S-validity, and then apply induction on the length of S-proofs.
E.II. Completeness (LfP 6.6)

The more interesting direction of adequacy to prove is right-to-left:

Completeness Theorem. If $\vdash_S \phi$, then $\vdash_S \phi$.

Remark. The proof is non-examinable—but too important not to show you.

E.II.1. Provability from Γ, redefined

To prove Completeness we re-define provability (following LfP):

New definition of S-provability of ϕ from Γ (LfP 176). A wff ϕ is provable from a set Γ iff $\vdash_S (\gamma_1 \land \cdots \land \gamma_n) \rightarrow \phi$ for some $\gamma_1, \ldots, \gamma_n \in \Gamma$ (or if $\Gamma = \emptyset$ and $\vdash_S \phi$).

Remark. For this section only (and Exercise Sheet 4, q. 4) we’ll write $\Gamma \vdash_S \phi$ for this new notion of provability. It coincides with the old one when $\Gamma = \emptyset$.

Unlike the old one, the new definition conforms to the Deduction Theorem. It also conforms to Cut.

DT: $\Gamma, \phi \vdash_S \psi$ iff $\Gamma \vdash_S \phi \rightarrow \psi$.

Cut: If $\Gamma_1 \vdash_S \delta_1, \ldots, \Gamma_n \vdash_S \delta_n$ and $\Sigma, \delta_1, \ldots, \delta_m \vdash_S \phi$, then $\Gamma_1, \ldots, \Gamma_n, \Sigma \vdash_S \phi$

Proof. Exercise. See LfP 178.

E.II.2. Consistency (LfP 176)

The Completeness proof makes use of the notions of consistency and maximal consistency.

Definition of S-consistency Let \perp abbreviate $\sim (P \rightarrow P)$. A set of wffs Γ is:

- S-inconsistent iff $\vdash_S \perp$
- S-consistent iff $\not\vdash_S \perp$

Notation. We write $\Gamma \vdash_S$ when Γ is S-inconsistent, $\Gamma \not\vdash_S$ when Γ is S-consistent.

Consistency is systematically related to provability:

Lemma: properties of inconsistent sets.

- (a) $\Gamma \vdash_S$ iff, for every ϕ, $\Gamma \vdash_S \phi$.
- (b) $\Gamma, \sim \phi \vdash_S$ iff $\Gamma \vdash_S \phi$.
- (c) $\Gamma, \phi \vdash_S$ iff $\Gamma \vdash_S \sim \phi$.

Proof. Exercise.

Definition of maximal S-consistent set: a set Θ is *maximally consistent* in S iff:
- Θ is S-consistent: i.e. $\Theta \not\vdash S \bot$ and
- Θ is maximal: i.e. for each wff ϕ, either $\phi \in \Theta$ or $\neg \phi \in \Theta$.

Remark. Some logicians say ‘negation complete’ where Sider says ‘maximal’.

E.II.4. Proof of Completeness from two lemmas

Our proof of Completeness relies on two key lemmas:

Lindenbaum’s Lemma.
Every S-consistent set has a maximally S-consistent superset: i.e. if Γ is a consistent set, there is a maximally consistent set Θ, with $\Gamma \subseteq \Theta$.

For the second, say that a set of wffs Θ is satisfied at some world w of some Kripke model $\mathcal{M} = \langle W, R, I \rangle$ iff $V_\mathcal{M}(\phi, w) = 1$ for each $\phi \in \Theta$—"\mathcal{M} is a model for Θ".

Canonical Model Lemma.
Every maximally S-consistent set Θ is satisfied by some world w in some model \mathcal{M}. In fact, we can pick \mathcal{M} to be ‘the canonical model’ for S—\mathcal{M}_S (defined in section E.II.6 below).

Proof of the Completeness Theorem. We first prove the following claim:

Claim. $\Gamma \not\vdash S \phi$, then $\Gamma \not\vdash S \phi$.

Suppose $\Gamma \not\vdash S \phi$

$\therefore \Gamma, \neg \phi \not\vdash S$ (property of inconsistent sets (b))

\therefore There is a maximally S-consistent $\Theta \supseteq \Gamma \cup \{\neg \phi\}$ (Lindenbaum’s Lemma)

$\therefore \Theta$ is satisfied by some w in \mathcal{M}_S (Canonical Model Lemma)

$\therefore \Gamma \cup \{\neg \phi\}$ is satisfied by some w in \mathcal{M}_S.

$\therefore \Gamma \not\vdash S \phi$.

Completeness is immediate from the claim. (Just contrapose in the $\Gamma = \emptyset$ case.)
E.II.5. Proof of Lindenbaum’s Lemma

Let Γ be consistent. List all the MPL-wffs: ϕ_1, ϕ_2, \ldots. We construct a maximally consistent superset by recursively adding each formula or its negation to Γ:

\[
\begin{align*}
\Theta_0 &= \Gamma \\
\Theta_{n+1} &= \begin{cases}
\Theta_n \cup \{\phi_{n+1}\} & \text{if this is S-consistent} \\
\Theta_n \cup \{\neg\phi_{n+1}\} & \text{otherwise}
\end{cases} \\
\Theta &= \Theta_0 \cup \Theta_1 \cup \Theta_2 \cup \cdots = \{\psi : \psi \in \Theta_i, \text{ for some } i \in \mathbb{N}\}
\end{align*}
\]

By the construction, Θ is clearly a maximal superset of Γ.

Lindenbaum’s Lemma may then be established with the following two claims:

Claim 1. Each Θ_n is consistent.

Proof of claim 1 by induction on n.

Base Case. $\Theta_0 = \Gamma$, which is S-consistent *ex hypothesi.*

Induction Hypothesis. Suppose Θ_n is S-consistent.

Induction Step. Suppose, for reductio, that Θ_{n+1} is not S-consistent. By construction, $\Theta_n \not\vdash \phi_{n+1}$ and $\Theta_n \not\vdash \neg\phi_{n+1}$. Consequently, $\Theta_n \not\vdash \phi_{n+1}$ and $\Theta_n \not\vdash \neg\phi_{n+1}$ (properties of inconsistent sets (c) and (b)). Moreover $\phi_{n+1}, \neg\phi_{n+1} \not\vdash \bot$ (from Exercise Sheet 3). So (by Cut) $\Theta_n \not\vdash \bot$. Contradiction.

Claim 2. Θ is consistent.

Proof of claim 2. Suppose $\Theta \not\vdash \bot$ for reductio. Then $\not\vdash \theta_1 \land \cdots \land \theta_k \rightarrow \bot$ for $\theta_1, \ldots, \theta_k \in \Theta$. But note that each θ_i is in some Θ_n_i ($i = 1, \ldots, k$). Moreover, by construction, $\Theta_i \subseteq \Theta_j$ whenever $i \leq j$. So pick n such that $n_1, \ldots, n_k \leq n$. Then $\theta_1, \ldots, \theta_k \in \Theta_n$. So $\Theta_n \not\vdash \bot$. This contradicts claim 1.
E.II.6. Proof of the Canonical Model Lemma for K.

Definition of the canonical model for S: define $\mathcal{M}_S = \langle \mathcal{W}, \mathcal{R}, \mathcal{I} \rangle$ as follows:

- $\mathcal{W} = \{ \Theta : \Theta$ is maximally S-consistent $\}$
- $\mathcal{R}(\Theta, \Sigma)$ iff $\phi \in \Sigma$ whenever $\Box \phi \in \Theta$
- $\mathcal{I}(\alpha, \Theta) = 1$ iff $\alpha \in \Theta$, for each sentence letter α

Remark. In other words, $\mathcal{R}(\Theta, \Sigma)$ iff $\Box \phi \in \Theta$ whenever $\phi \in \Sigma$. See LfP 176.

Lemma: properties of maximal consistency: Let Θ be maximally S-consistent.

(a) $\phi \in \Theta$ iff $\Theta \vdash_S \phi$.

(b) (i) $\neg \phi \in \Theta$ iff $\phi \notin \Theta$

(ii) $\phi \rightarrow \psi \in \Theta$ iff $\phi \notin \Theta$ or $\psi \in \Theta$

(iii) $\Box \phi \in \Theta$ iff $\phi \in \Sigma$ for every maximally S-consistent Σ with $\mathcal{R}(\Theta, \Sigma)$

Proof. Exercise. \square

Proof of the Canonical Model Lemma for K. Let Θ be maximally K-consistent. We need to show that Θ is satisfied at some world of \mathcal{M}_K. In fact, we show that Θ is satisfied at Θ. This is immediate from the following claim:

Claim. $V_{\mathcal{M}_K}(\phi, \Theta) = 1$ iff $\phi \in \Theta$ (\dagger)

To finish, it only remains to prove the claim by induction on complexity of ϕ.

Base Case. $\phi = \alpha$, a sentence letter. Immediate by definition of \mathcal{I} in \mathcal{M}_K.

Induction Hypothesis. Suppose (\dagger) holds for wffs with lower complexity than ϕ.

Induction Step. Consider ϕ. There are three cases:

- $\phi = \neg \psi$. $V_{\mathcal{M}_K}(\neg \psi, \Theta) = 1$ iff $V_{\mathcal{M}_K}(\psi, \Theta) \neq 1$ iff $\psi \notin \Theta$ (by \dagger) iff $\neg \psi \in \Theta$ (by (b(i))
- $\phi = \psi \rightarrow \chi$. Similar argument, using (b(ii)).
- $\phi = \Box \psi$. $V_{\mathcal{M}_K}(\Box \psi, \Theta) = 1$ iff $V_{\mathcal{M}_K}(\psi, \Sigma) = 1$ for each world Σ with $\mathcal{R}(\Theta, \Sigma)$ iff $\psi \in \Sigma$ for each max. K-consistent Σ with $\mathcal{R}(\Theta, \Sigma)$ (by \dagger) iff $\Box \psi \in \Theta$ (by (b(iii))) \square

E.II.7. Sketch of Completeness for D, T, B, S4 and S5

For the other systems, we define the canonical model in the same way, identifying worlds with maximally S-consistent sets.

One extra step is required: we need to show that the canonical \mathcal{M}_S is indeed an S-model—i.e. that \mathcal{R} has the relevant property: e.g. that \mathcal{R} in \mathcal{M}_T is reflexive.